Decadal and longer changes of the winter sea level pressure fields and related synoptic activity over the North Atlantic

Author(s):  
Igor I. Zveryaev
2018 ◽  
Vol 31 (13) ◽  
pp. 4981-4989 ◽  
Author(s):  
Jessica S. Kenigson ◽  
Weiqing Han ◽  
Balaji Rajagopalan ◽  
Yanto ◽  
Mike Jasinski

Recent studies have linked interannual sea level variability and extreme events along the U.S. northeast coast (NEC) to the North Atlantic Oscillation (NAO), a natural internal climate mode that prevails in the North Atlantic Ocean. The correlation between the NAO index and coastal sea level north of Cape Hatteras was weak from the 1960s to the mid-1980s, but it has markedly increased since around 1987. The causes for the decadal shift remain unknown. Yet understanding the abrupt change is vital for decadal sea level prediction and is essential for risk management. Here we use a robust method, the Bayesian dynamic linear model (DLM), to explore the nonstationary NAO impact on NEC sea level. The results show that a spatial pattern change of NAO-related winds near the NEC is a major cause of the NAO–sea level relationship shift. A new index using regional sea level pressure is developed that is a significantly better predictor of NEC sea level than is the NAO and is strongly linked to the intensity of westerly winds near the NEC. These results point to the vital importance of monitoring regional changes of wind and sea level pressure patterns, rather than the NAO index alone, to achieve more accurate predictions of sea level change along the NEC.


2009 ◽  
Vol 22 (5) ◽  
pp. 1223-1238 ◽  
Author(s):  
Chiara Cagnazzo ◽  
Elisa Manzini

Abstract The possible role of stratospheric variability on the tropospheric teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic and European (NAE) region is addressed by comparing results from two ensembles of simulations performed with an atmosphere general circulation model fully resolving the stratosphere (with the top at 0.01 hPa) and its low-top version (with the top at 10 hPa). Both ensembles of simulations consist of nine members, covering the 1980–99 period and are forced with prescribed observed sea surface temperatures. It is found that both models capture the sensitivity of the averaged polar winter lower stratosphere to ENSO in the Northern Hemisphere, although with a reduced amplitude for the low-top model. In late winter and spring, the ENSO response at the surface is instead different in the two models. A large-scale coherent pattern in sea level pressure, with high pressures over the Arctic and low pressures over western and central Europe and the North Pacific, is found in the February–March mean of the high-top model. In the low-top model, the Arctic high pressure and the western and central Europe low pressure are very much reduced. The high-top minus low-top model difference in the ENSO temperature and precipitation anomalies is that North Europe is colder and the Northern Atlantic storm track is shifted southward in the high-top model. In addition, it has been found that major sudden stratospheric warming events are virtually lacking in the low-top model, while their frequency of occurrence is broadly realistic in the high-top model. Given that this is a major difference in the dynamical behavior of the stratosphere of the two models and that these events are favored by ENSO, it is concluded that the occurrence of sudden stratospheric warming events affects the reported differences in the tropospheric ENSO–NAE teleconnection. Given that the essence of the high-top minus low-top model difference is a more annular (or zonal) pattern of the anomaly in sea level pressure, relatively larger over the Arctic and the NAE regions, this interpretation is consistent with the observational evidence that sudden stratospheric warmings play a role in giving rise to persistent Arctic Oscillation anomalies at the surface.


2018 ◽  
Vol 18 (12) ◽  
pp. 3311-3326 ◽  
Author(s):  
Nina Ridder ◽  
Hylke de Vries ◽  
Sybren Drijfhout

Abstract. Atmospheric river (AR) systems play a significant role in the simultaneous occurrence of high coastal water levels and heavy precipitation in the Netherlands. Based on observed precipitation values (E-OBS) and the output of a numerical storm surge model (WAQUA/DSCMv5) forced with ERA-Interim sea level pressure and wind fields, we find that the majority of compound events (CEs) between 1979 and 2015 have been accompanied by the presence of an AR over the Netherlands. In detail, we show that CEs have a 3 to 4 times higher chance of occurrence on days with an AR over the Netherlands compared to any random day (i.e. days without knowledge on presence of an AR). In contrast, the occurrence of a CE on a day without AR is 3 times less likely than on any random day. Additionally, by isolating and assessing the prevailing sea level pressure (SLP) and sea surface temperature (SST) conditions with and without AR involvement up to 7 days before the events, we show that the presence of ARs constitutes a specific type of forcing conditions that (i) resemble the SLP anomaly patterns during the positive phase of the North Atlantic Oscillation (NAO+) with a north–south pressure dipole over the North Atlantic and (ii) cause a cooling of the North Atlantic subpolar gyre and eastern boundary upwelling zone while warming the western boundary of the North Atlantic. These conditions are clearly distinguishable from those during compound events without the influence of an AR which occur under SLP conditions resembling the East Atlantic (EA) pattern with a west–east pressure dipole over northern Europe and are accompanied by a cooling of the West Atlantic. Thus, this study shows that ARs are a useful tool for the early identification of possible harmful meteorological conditions over the Netherlands and supports an effort for the establishment of an early warning system.


2005 ◽  
Vol 133 (10) ◽  
pp. 2894-2904 ◽  
Author(s):  
Ulrike Löptien ◽  
Eberhard Ruprecht

Abstract The North Atlantic Oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region. In the present study, the role of the synoptic systems (cyclones and anticyclones) in generating the NAO pattern is investigated. To study the intermonthly variations of the NAO, NCEP–NCAR reanalysis data are used, and for the interdecadal variations the results of a 300-yr control integration under present-day conditions of the coupled model ECHAM4/OPYC3 are analyzed. A filtering method is developed for the sea level pressure anomalies. Application of this method to each grid point yields the low-frequency variability in the sea level pressure field that is due to the synoptic systems. The low-frequency variability of the filtered and the original data are in high agreement. This indicates that the low-frequency pressure variability, and with it the variability of the NAO, is essentially caused by the distribution of the synoptic systems. The idea that the distribution of the synoptic systems is the cause of the variation of the NAO is confirmed by high correlation between the latitudinal position of the polar front over the North Atlantic and the NAO index. Since most of the low-frequency variability in sea level pressure can be explained through the distribution of the synoptic systems, the NAO seems to be a reflection of the distribution of the synoptic systems, rather than the source for variations in the cyclone tracks.


Sign in / Sign up

Export Citation Format

Share Document